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The dynamical theory, which describes both diffraction
profiles and reciprocal space maps measured from imperfect
crystals with account for instrumental factors of triple-
crystal diffractometer (TCD), has been developed for adequate
quantitative characterization of microdefects. Analytical
expressions for coherent and diffuse scattering (DS) intensities
measured by TCD in the Bragg diffraction geometry have
been derived by using the generalized statistical dynamical
theory of X-ray scattering in real single crystals with randomly
distributed defects. The DS intensity distributions from single

crystals containing clusters and dislocation loops have been
described by explicit analytical expressions. Particularly, these
expressions take into account anisotropy of displacement fields
around defects with discrete orientations. Characteristics of
microdefect structures in silicon single crystals grown by
Czochralsky- and float-zone methods have been determined
by analyzing the measured TCD profiles and reciprocal
space maps. The sensitivities of reciprocal space maps
and diffraction profiles to defect characteristics have been
compared.
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1 Introduction The experiments with using triple-
crystal X-ray diffractometer (TCD) provide the most
complete diffractometric characterization of both defects in
crystal bulk and strains in disturbed subsurface layers but
there exist some experimental and theoretical difficulties
in the triple-crystal X-ray diffractometry for the maximal
realization of its potentialities. First, it is often necessary
to find a compromise between diffractometer resolution
and luminosity for optimizing the diagnostic capability
of measurements. Second, at quantitative determination of
defect characteristics in single and multilayered crystal
structures, one needs for adequate theoretical models of
diffraction experiments.

On the one hand, the most widely used variants of the
diffraction theory like Kato’s statistical dynamical theory
[1–5] do not give evident and direct relationships between
defect characteristics and parameters of diffraction intensity
distributions. Thus, the reliable information on defect
characteristics cannot be extracted from measured diffraction
patterns by using results of such theories. On the other

hand, when performing TCD measurements of the diffuse
scattering (DS) intensity distributions, the consideration is
usually restricted to the analysis only in those reciprocal
lattice regions where the coherent component of the
diffraction intensity can be neglected or subtracted by using
the equations for perfect crystals. But such approach can lead
to systematic errors when determining the characteristics of
imperfections, especially, large microdefects which produce
DS peaks commensurable in width and height, and angular
positions with coherent ones.

The consecutive account for dynamical effects in both
coherent and DS components has been carried out in
the generalized dynamical theory of X-ray scattering by
imperfect crystals with randomly distributed microdefects
[6, 7]. The main advantage of this theory is the availability
of self-consistent analytical expressions for coherent and
DS intensities and their direct relations with defect
characteristics, which provides the unique possibility to
perform the full quantitative characterization of defect
structures.

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



1762 V. B. Molodkin et al.: Sensitivity of X-ray diffractometers to microdefects in Si

It should be mentioned here that in kinematical
diffraction cases the use of the dynamical formulas remains
valid as well. Moreover, if the dynamical approach is used,
it is not necessary to analyze and justify its applicability for
each specific experiment, what is required for the kinematical
consideration.

The purpose of the present article is obtaining the
analytical expressions for the description of both total
diffraction profiles and reciprocal space maps measured by
TCD in the Bragg diffraction geometry with account for
DS contributions from various-type microdefects including
dislocation loops with discrete orientations. The analytical
expressions for coherent and DS components of the imperfect
crystal reflectivity measured by TCD will be derived in
Section 2. The characterization of different defect structures
in silicon crystals by using maps of DS intensity and total
TCD profiles as well as a comparison of these diffractometric
methods will be given in Section 3.

2 Diffraction model The intensity registered by
TCD detector from investigated imperfect crystal can be
represented in the form [8, 9]:

I
(
�θ, �θ′) = Icoh

(
�θ, �θ′) + Idiff

(
�θ, �θ′) . (1)

This intensity depends only on two angular variables,
namely, deviations of investigated crystal �θ and analyzer
crystal �θ′ from their exact reflecting positions.

2.1 Coherent component In the case of dispersion-
less (n, −n, n) geometry, considered here for simplicity, the
coherent component of the intensity measured by TCD has
the form [8, 9]:

Icoh

(
�θ, �θ′) = I0

∞∫
−∞

dx RnM
M

(
b−1

M

[
b−1

S (x − �θ) − �θ
])

× Rcoh

(
b−1

S (x − �θ)
)
R

nA
A

(
x − �θ′),

(2)

where I0 is an intensity of incident X-ray beam, RM and RA

are reflection coefficients of the monochromator and analyzer
crystals (which can contain microdefects in bulk and strains
in surface layers), nM and nA are numbers of reflections
at these crystal, bM and bS are asymmetry parameters
of monochromator and sample crystals, respectively, b =
γ0|γH |−1 (subscripts M and S are omitted), γ0 = sin(θB − ψ)
and γH = − sin(θB + ψ) are direction cosines with respect
to the inner normal n to the entrance crystal surface for
wave vectors of an incident plane wave K and a scattered
plane wave K′ = K + H, respectively, H is a reciprocal
lattice vector, θB is the Bragg angle, ψ is an angle between
crystal surface and reflecting planes. The expressions for the
coherent component of reflection coefficient Rcoh(�θ) for
imperfect crystal have been derived in Ref. [6]. They take
into account all effects of dynamical scattering including

extinction of Bragg waves due to DS on microdefects.
The attenuation of Bragg waves, which is caused by the
coefficient of absorption due to DS [6, 7], is in general
substantially more essential than that caused by the static
Debye–Waller factor. Thus, unlike kinematic theory [10], the
dynamical coherent scattering is not less sensitive to defect
characteristics than DS.

2.2 Diffuse component The diffuse component of
the intensity measured by TCD can be represented by the
expression [8, 9]:

Idiff (�θ, �θ′) = I0

∞∫
−∞

dxRnM
M (x)

×
∞∫

−∞

dx′rdiff (p)RnA
A

(
x′ − �θ′) .

(3)

The function rdiff (p) in Eq. (3) represents the diffuse
component of the differential reflection coefficient RD(k)
[6, 7] integrated over a vertical divergence

rdiff (p) = K−1

∫
dkyRD (k), (4)

p = q − kyey, q = k + iµin. (5)

In Eq. (5), the complex momentum transfer q enclose
the interference absorption coefficient µi, K = |K| = 2π/λ, λ

is X-ray wave length. Components kx and kz of the vector
k = (kx, ky, kz) are in the plane of coherent scattering (K, H).
The component kz is directed along the normal n, and vector k
describes deviation of the wave vector K′ from the reciprocal
lattice point H, which corresponds to the reciprocal lattice
vector H.

When several types of microdefects are present in
a crystal simultaneously, but without mutual correlation,
Eq. (4) should be simply replaced by the sum of
corresponding expressions for each type of defects [11].
After integrating in Eq. (4) over a vertical divergence ky with
account for Eq. (5) we obtain in the Huang scattering region(
ky ≤ kmα

y
≡ √

k2
mα

− p2, where p ≡ |p|, kmα ≡ 1/Rα
eff , and

Rα
eff is an effective radius of α type defect [9]

)
:

rdiff (p) = Kπ−1
∑

α

Mα

(
I∞

SW α
− I

kmα
y

SW α + I
kmα
y

H α

)
, (6)

Mα = cαm0C
2E2 (2γ0µi)

−1
, m0 = π vc

(H |χrH | /λ)2

4
,

where cα is a concentration of randomly distributed α-type
defects per one lattice site, polarization factor C = 1 or
cos(2θB) for σ and π polarization states, respectively, vc is the
volume of unit cell, H = |H |, E is the static Debye–Waller
factor, χrH is a Fourier component of the real part of the
complex crystal polarizability.
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Similarly, in the Stokes–Wilson scattering region
(ky>kmα

y
) we obtain:

rdiff (p) = Kπ−1
∑

α

MαI
∞
SW α

. (7)

In Eqs. (6) and (7), the quantities I
km
y

SW α and I
km
y

H α represent
the following integrals (with limits km

y
= kmα

y
or ∞) over

Huang and Stokes–Wilson scattering regions, respectively:

I
km
y
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km
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y
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〉

, (8)
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)
FH α, (9)

where uαq are the Fourier components of static displacements
fields from α type defect [10], H 0 = H/H , angle brackets
〈· · ·〉 denote the averaging over discrete orientations of
defects. After averaging and integration over ky in Eqs. (8)
and (9) we obtain:
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In the case of spherical clusters (α = 1), the coefficients
Biα (i = 1, 4) in Eqs. (10)–(12) take the following values:

B01 =
(

4πAC

vc

)2

, (13)

B11 = B01H
2
0y
, B21 = B01

(∣∣H 0p0

∣∣2 − H 2
0y

)
,

B31 = B41 = 0,

where AC = Γ εR3
1 is the cluster strength, Γ = (1 + ν)/

(3 − 3ν), ε is the strain at the cluster boundary, ν is the Poisson
ratio, R1 is the radius of spherical cluster, p0 = p/p.

In the case of dislocation loops (α = 2) with discrete
orientations 〈110〉 or 〈111〉, the coefficients Bi2 take the form:

B02 = 4C2
n1

[
AL

/
n1vc (1 − ν)

]2

3
, (14)

B12 = B02

{
4 (1 − ν)2 + [

(4β (1 − n1) − 3) ν2

+ (2β (n1 − 2) + 8) ν + β − 4] H 2
0y

}
,
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]
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[
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2H 2
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(
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0
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(
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,
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B42 = B02 (β − 3)
(∣∣H 0p0

∣∣2 − H 2
0y

)

× (
1 + S

(
p0, p0, p

∗
0, p

∗
0
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,

S (a1, a2, a3, a4) = a1xa2xa3xa4x + a1ya2ya3ya4y

+ a1za2za3za4z,

where AL = π |b| R2
2 is the dislocation loop strength, R2

is the radius of dislocation loop, β = C1
n1

/C2
n1

, Cm
n

are
binomial coefficients, n1 is the number of units in the Burgers
vector b, the pair of numbers (n1, β) in the last formulas
denotes the type of averaging, and for 〈110〉 and 〈111〉
orientations of dislocation loops takes the values (2,2) and
(3,1), respectively.

The interference absorption coefficient µi in Eqs.
(5)–(12) plays a role of the cut parameter and removes the
divergence at (kx, kz) → 0. This coefficient allows to describe
correctly the contribution of diffuse component to TCD
diffraction profiles in the region of coherent peak, where
this contribution is rapidly decreased (approximately by an
order of magnitude) because µ is increased from the value µ0

(linear coefficient of photoelectric absorption) to the value of
2π/Λ (Λ is an extinction length).
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It should be emphasized that the analytical results
obtained for discrete oriented dislocation loops can be
immediately use in the case of disc-shaped clusters lying
in corresponding crystal lattice planes. This can be made
through changing in coefficients Bi2 the vector b to the unit
normal to these planes and by replacing the dislocation loop
strength AL in Eq. (14) by the cluster strength AC = 3�εVC/4π

(where VC is the volume of a disc-shaped cluster).

3 Analysis of measurements With using the above
formulas (1)–(12), the different defect structures in single
silicon crystals grown by float zone (FZ Si) and Czochralsky
(Cz Si) methods have been investigated by analyzing
reciprocal space maps, which were measured by commercial
diffractometer PAN analytical X’Pert Pro MRD XL, and
diffraction profiles, which were measured with a higher
resolution by homemade TCD [8, 9].

As can be seen in Fig. 1, the map allowing reliable defect
characterization was measured only from annealed Cz Si
sample (50 h at 1150 ◦C) with well-developed microdefect
structure (Fig. 1a). For this sample, the characterization
results obtained from the map coincide sufficiently well
for predominant type of defects (large dislocation loops)
with those obtained from the set of diffraction profiles one
of which is shown in Fig. 1c. Some discrepancy in the
concentration (see Table 1) can be explained by the presence
of smaller dislocation loops and oxygen precipitates, which
also give contributions to the diffraction pattern but cannot
be distinguished by the commercial diffractometer because
of insufficient resolution ability. The characterization of
small clusters and two types of small dislocation loops was
possible due to using the set of diffraction profiles measured
by homemade diffractometer. Exclusively important factor
for the reliable determination of characteristics of these
defects was the use of the developed dynamical theory,
which permits determining simultaneously a set of defect
characteristics due to the self-consistent consideration
of both diffuse and coherent components of diffraction
patterns.

It should be remarked that the weak asymmetry along Qz

axis, which is observed in measured maps from Cz Si sample,
can be caused by the antisymmetric part of DS intensity
from microdefects [10], but was not taken into account in
the performed calculations.

Figure 1 Reciprocal space maps (left – measured by commercial
diffractometer, right – calculated) and total TCD profiles (markers
– measured by homemade diffractometer, line – calculated) from
annealed Cz Si (a,c) and FZ Si (b,d) samples (111 reflection, CuKα

radiation).

The map measured from as-grown FZ Si sample (Fig. 1b)
shows almost perfect crystalline structure with a weak diffuse
background whereas the corresponding diffraction profiles
(Fig. 1d) exhibit clear diffuse peaks. These profiles provide a
sufficiently reliable determination of characteristics of large
dislocation loops (see Table 1). However, the observed DS
intensity is too weak to distinguish the contribution from
smaller loops. For solving the problem of diffractometric
detection and characterization of small defects with small
concentrations one should additionally use the integral

Table 1 Radii (Rα) and number densities (nα = cα/vc) of spherical oxygen clusters (α = 1) and circular dislocation loops (α = 2) in Cz Si
and FZ Si crystals obtained by fitting reciprocal space maps and total TCD profiles.

sample data type R1 (nm) n1 (cm−3) R2 (�m) n2 (cm−3)

Cz Si profile 10 ± 1 1.0 ± 0.1 × 1013 0.05 ± 0.005 8.0 ± 2 × 1011

0.3 ± 0.03 9.0 ± 3 × 109

5.0 ± 0.3 4 ± 0.5 × 107

map – – 4.3 ± 0.6 1.9 ± 1 × 108

FZ Si profile – – 1.15 ± 0.1 3.5 ± 1 × 108

map – – 2.1 ± 0.5 7.3 ± 3 × 107
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diffraction methods like the double-crystal diffractometry
with widely open detector window, where the DS intensity
is integrated over Ewald sphere [6, 7].

4 Conclusions We propose the dynamical theory
which self-consistently describes both coherent and diffuse
components of diffraction profiles and reciprocal space maps
measured from imperfect crystals. The instrumental factors
of TCD were taken into account as well. The simultaneous
analysis of both coherent and diffuse components of
diffraction patterns, as well as the combination of various
diffractometric methods, provides the possibility for a more
reliable characterization of multiparametric defect structures.
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