The effect of ion implantation on structural damage of compositionally graded AlGaN layers

O.I. Liubchenko1,*, V.P. Kladko1, H.V. Stanchu1,2, T.M. Sabov1, V.P. Melnik1, S.B. Kryvyi1,3 and A.E. Belyaev1

1V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 41, prosp. Nauky, 03680 Kyiv, Ukraine
2Institute for Nanoscience & Engineering, University of Arkansas, W. Dickson 731, Fayetteville, Arkansas 72701, United States
3Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46 PL-02-668 Warsaw, Poland
*E-mail: lubchenco.a@gmail.com

Abstract. Compositionally graded Al$_x$Ga$_{1-x}$N alloys with the Al concentration in the ($7 \leq x \leq 32$) range were implanted with (Ar$^+$) ions to study the structural and strain changes (strain engineering). It was shown that ion-implantation leads to ~0.3…0.46% hydrostatic strains and a relatively low damage of the crystal structure. The ion-implantation leads mainly to an increase of the density of point defects, while the dislocation configuration is almost unaffected. The density of microdefects is sufficiently reduced after the post-implantation annealing. The structural quality of the Al$_x$Ga$_{1-x}$N layers strongly depends on the Al concentration and is worsen with increasing Al. The implantation induced structural changes in highly dislocated Al$_x$Ga$_{1-x}$N layers are generally less pronounced. Based on the X-ray diffraction, a model is developed to explain the strain field behavior in the Al$_x$Ga$_{1-x}$N/GaN heterostructures by migration of point defects and strain field redistribution. The approach to simulate 2θ/ω scans using statistical dynamical theory of X-ray diffraction for implanted compositionally graded structures AlGaN has been developed.

Keywords: Al$_x$Ga$_{1-x}$N, graded layers, ion implantation, statistical X-ray diffraction theory, microdefects.

doi: https://doi.org/10.15407/spqeo22.01.119
PACS 61.05.C-, 61.05.-a, 61.72.-y, 61.10.Nz, 78.70.Ck, 78.55.Cr, 68.55.Ln, 68.65.-k

1. Introduction

The wide range of direct band gaps of AlGaN alloys (from 3.4 to 6.2 eV) and the presence of strong electronic polarization fields [1] are attractive properties for the development of various optoelectronic devices. In particular, the recently demonstrated polarization-induced doping in III-nitrides was shown to effectively enhance the p-type conductivity of the AlGaN layers [2], which was successfully exploited for fabrication of light emitting diodes (LEDs) [2] and p-n junction devices [3]. At the same time, the ion implantation technique is more attractive for selective area doping and implant isolation [4].

It is well known that the implantation process leads to severe deterioration of the crystalline quality and accumulation of large lattice strains. These effects were extensively studied in the past for AlN and GaN semiconductors [5, 6], and it was shown that damage and strain buildup with increasing the ion dose until amorphization. The implantation damage is partially reduced after the post implantation high-temperature annealing, which is performed for donor/acceptor activation.

The recent studies on the process of ion implantation in ternary Al$_{0.44}$Ga$_{0.56}$N layers have shown a multi-step damage accumulation with increasing the implantation fluence, and the transition threshold of the defects buildup increasing with AlN molar fraction [7]. No amorphization was reported for the AlGaN alloys implanted with Ar$^+$ ions at 320 keV. The accumulation of implantation damage in Al$_x$Ga$_{1-x}$N alloys was also investigated in Ref. [8] for Al$_{0.15}$Ga$_{0.85}$N and Al$_{0.77}$Ga$_{0.23}$N layers implanted under random and channeled geometries with Tm$^+$ ions. The damage level was shown to be lower for channeling implantation, and like in Ref. [7] the damage behavior was distinct for the alloys with different AlN molar fractions. Specifically, it
was shown that surface regions with lower damage levels form for AlGaN layers with higher AlN molar fractions. Similar behavior of the bimodal damage was also demonstrated in Ref. [9] for Al$_{x}$Ga$_{1-x}$N alloys (x = 0.13, 0.47, 0.7, and 1) implanted with Ar$^+$ ions. In addition, the X-ray diffraction (XRD) analysis has shown that the implantation with Ar$^+$ ions introduces hydrostatic strain resulting from the expansion of the c-lattice parameter. Saturation of the strain was suggested to occur in alloys implanted at high ion fluences.

In this work, a detailed XRD study of the effect of ion implantation and post implantation annealing on the structural damage and strain state is presented for compositionally graded Al$_{1-x}$Ga$_x$N layers. The implications of the described results are important for further understanding of the processes of implantation damage in III-nitride alloys with compositional gradients.

2. Experiment

The Al$_{1-x}$Ga$_x$N layers were grown in a Veeco Gen-II plasma-assisted molecular beam epitaxy (PAMBE) system on commercial substrates consisting of ~5 µm of (0001) oriented GaN on AlN/sapphire. First, the 400-nm thick GaN buffer layer was grown under gallium-rich conditions at a substrate temperature of 690 °C. Next, the substrate temperature was raised up to 710 °C, and compositionally graded Al$_{1-x}$Ga$_x$N layers were grown by linearly changing the temperature of the Al effusion cell [10]. The AlN molar fraction in the Al$_{1-x}$Ga$_x$N layers was graded from ~7 up to ~22% (sample S1) and from ~7 up to ~32% (sample S2). Implantation was performed at room temperature at the angle 7°. Both samples were implanted with Ar$^+$ ions in two steps. For each step, the implantation energy and dose were 100 keV and 2×1014 at/cm2, respectively. The high-temperature annealing was performed at ~750 °C for 15 min. The samples were investigated with high-resolution X-ray diffraction (HRXRD) using PANalytical X’Pert Pro MRD XL diffractometer equipped with the CuK$_{α1}$ radiation ($λ$ = 0.154056 nm), four-bounce (220) Ge monochromator, and three-fold (022) Ge analyzer.

3. Theory

To simulate X-ray diffraction spectra simulation, we use the statistical dynamical theory of X-ray diffraction developed in Refs. [11–13] for uniform epitaxial films with randomly distributed microdefects. The coherent part of the diffracted intensity from a uniform crystalline layer is based on solution of the equations for the coherent and diffuse waves [11] under the condition $⟨u⟩=0$ (where $⟨u⟩$ is the statistical average of the displacement of the atoms from their positions in a perfect lattice [11, 13, 14]).

In the case of symmetric Bragg diffraction, the diffracted (E^C_n) and transmitted amplitudes (E^T_n) of X-ray waves from a plane-parallel plate of thickness l are given as [11]:

$$E^C_n(z) = (ξ_i \exp[iξ(l-z)]-ξ_s)\exp(iεz)/Q , \quad (1)$$

$$E^T_n(z) = Eσ_g(\exp[iξ(l-z)]-1)\exp(iεz)/Q , \quad (2)$$

where z is the depth coordinate.

The amplitude coefficients of the reflected r and transmitted t waves through a layer of the thickness l are [11]:

$$r^{±}=Eσ_x(\exp[iξ(l)]-1)/Q , \quad (3)$$

$$t = ξ\exp[iεz]/Q , \quad (4)$$

$$r^{−}=ξ\exp[−iεz]/Q , \quad (5)$$

where, [11], $Q = ξ_1 \exp[iξ(l)]-ξ_2 , \quad ξ_1,2 = (−η_d ± ξ)/2 , \quad ξ = \sqrt{η_d^2 − 4σ^2} , \quad σ^2 = E^2σ_gσ_g, \quad ε_1,2 = σ_0 + iψ + ξ_1,2 , \quad η_d = η + 2ψ , \quad η = 2π[ξ_0 + Δθ sin(2θ_0) / (λγ_0)], \quad σ_0 = πξ_0 / (λγ_0), \quad σ_g = γ_0 / (λγ_0).$ Here, E is the static Debye–Waller (D-W) factor, $λ$ – X-ray wavelengths, $γ_0$ and $γ_0$ are direction cosines, $ξ_0$, $ξ_0$, $ξ_0$ – electric susceptibilities, which are related to the structure factor of the crystal unit cell, c is the polarization factor, $θ$ – angle of incidence, $θ_0$ – Bragg angle, $Δθ = θ − θ_0$ – deviation from the exact Bragg position.

The X-ray diffraction spectra from the Al$_{1-x}$Ga$_x$N/GaN heterostructures were calculated using the recursive formula approach. Accordingly, the amplitude coefficients of reflected R_n and transmitted T_n waves in the n-th layer of a multilayered system are given as follows [11]:

$$R_n^± = R_0^± + l_T^±\frac{R_{n-1}^1}{1 - R_{n-1}^1} , \quad T_n^± = \frac{T_{n-1}^±}{1 - R_{n-1}^±} , \quad (6)$$

In more details, to obtain the diffracted intensity, the Al$_{1-x}$Ga$_x$N/GaN heterostructure is first separated by n sublayers. Then, this calculation starts from the substrate, and the recursion equations are used successively for each sublayer until the surface of the sample. Finally, the coherent part of the diffracted intensity is given by:

$$I^C_n = |R_n|^2 , \quad (7)$$

Reduction of diffracted intensity due to displacement fields $⟨u⟩$ associated with microdefects is accounted by using the static Debye–Waller factor E [11, 13, 14]:

$$E = \exp[ig\delta u] , \quad (8)$$

where g is the diffraction vector.

Liubchenko O.I., Kladko V.P., Stancha H.V. et al. The effect of ion implantation on structural damage ...
The randomly distributed spherically symmetric defects, which have zero deformation fields outside the cluster [11, 14–16], are considered to generalize the types of point defects and to describe the microdefect structure of the ion-implanted samples.

The displacement field for randomly distributed spherically symmetric defects [11, 14–16] is given by:

\[
\delta u(r) = \begin{cases}
0, & \text{if } |r| > R_d \\
\text{random value, if } |r| \leq R_d
\end{cases}
\]

The concentration of point defects in the Al\(_{x}\)Ga\(_{1-x}\)N layers implanted with Ar\(^{+}\) ions is commonly higher than in GaN bulk material [17, 18], and for the mentioned implantation energy and doses is expected to be at the order of 10\(^{19}\) cm\(^{-3}\) [19, 20].

Then, the static D-W factor is given by [11,14,16]:

\[
E = \exp\left(-C_d \frac{4\pi}{3} R_d^3 \right)
\]

and, for low defect concentrations \(E\) is reduced to [16]:

\[
E = 1 - C_d \frac{4\pi}{3} R_d^3.
\]

Here, \(C_d\) and \(R_d\) are the concentration and microdefect radius, respectively.

The correlation length \(\tau\) is the main parameter of statistical theory of X-ray diffraction, which determines the defect related diffuse scattering [11, 14, 15]:

\[
\tau = \int_0^{\gamma} \exp(i\xi) g(\xi) d\xi,
\]

where \(g(\xi)\) is the correlation function [11, 13, 16].

In general, there are few types of spherical-symmetric microdefects, each requiring unique expressions for the correlation functions [13, 14, 16]. In this work, for the sake of simplicity the correlation function was generalized by the Gaussian function [13, 16]:

\[
g(\xi) = \exp\left(\frac{\pi \xi^2}{4\tau_0^2} \right),
\]

which leads to the correlation length in the form of [13, 15]:

\[
\tau = \tau_0 \exp\left(-y^2\right) \left[1 + \text{erf}(iy)\right],
\]

where \(y = \tau_0^{1/\sqrt{\pi}}\) and \(\tau_0\) is the correlation length by Kato [21].

Considering the mentioned above spherically symmetric defects, the following relation is obtained between the correlation length \(\tau_0\) and defect radius \(R_d\) [14, 15]:

\[
\tau_0 = \frac{3}{4} R_d \gamma_0,
\]

where \(\gamma_0 = \sin(\theta_0)\).

Also, taking into account Eqs. (11) and (15), the defect radius \(R_d\) and concentration of defects \(C_d\) can be determined as follows:

\[
R_d = \frac{4}{3} \sin(\theta_0) \tau_0,
\]

\[
C_d = \frac{81}{64} \frac{(\sin(\theta_0))^3}{\pi \tau_0^3} \left[1 - E\right].
\]

Finally, within the kinematical approximation, the diffuse part of the diffracted intensity is given by [13, 15]:

\[
I^d = 2|\sigma| \int \left[1 - E^2\right] \cdot \text{Re}(\tau) \cdot d.
\]

4. Results and discussion

The reciprocal space maps (RSMs) were measured around the asymmetrical (205) reflection to study the epitaxial relationship in the ion-implanted GaN/Al\(_{x}\)Ga\(_{1-x}\)N heterostructures after implantation and annealing processing. The (205) RSMs of samples S1 and S2 are shown in Figs. 1a-d and Figs. 1e-h, respectively. The \(Q\) coordinate is inversely related to the lattice parameter \(a\) and \(Q\) – to the parameter \(c\) on RSMs. The most intensive peak and the elongated vertical streaks above it are attributed to the undamaged part of the GaN substrate and the compositionally graded Al\(_{x}\)Ga\(_{1-x}\)N layer, respectively. Implantation with Ar\(^{+}\) ions introduces expansion of the lattice parameter \(c\), which is reflected in a downward shift of both the Al\(_{x}\)Ga\(_{1-x}\)N peaks and streak below the GaN peak (Figs. 1b, 1c, 1f and 1g). The second implantation has induced an extra downward \(Q\) shift only for the Al\(_{x}\)Ga\(_{1-x}\)N peaks (Fig. 1e and 1h), which means increasing of the lattice parameter \(c\). In addition, RSMs shows fully strained graded layer to GaN substrate at all the processing stages. Also, after each processing stage, there are no visible \(Q\) – shift for the Al\(_{x}\)Ga\(_{1-x}\)N and GaN peak position, which indicates that implantation does not introduce notable strain along the \(a\)-axis of the crystal lattice. It is in agreement with previous reports [8, 22–24]. The high-temperature annealing resulted in a remarkable lattice recovery; however, some residual \(c\)-lattice extension is still observed in both the GaN and Al\(_{x}\)Ga\(_{1-x}\)N layers (Fig. 1d and 1h).
The HRXRD 2θ/ω scans were measured around the symmetrical (0002) reflection to investigate in more details the implantation damage in the compositionally graded layers. The scattered intensity near the low-order reflection is generally characterized with higher intensity contrast between the interference fringes and background level, which is important for retrieving reliable data. For the samples S1 and S2, the measured (grey circles) (0002) 2θ/ω scans are shown in Fig. 2. The most intense peak on the HRXRD spectra corresponds to the undamaged GaN substrate. The peaks from the graded Al\textsubscript{x}Ga\textsubscript{1-x}N layer appear in the form of interference fringes at the right side of the sharp GaN peak. Ion-implantation resulted in an extension of the GaN and Al\textsubscript{x}Ga\textsubscript{1-x}N peaks toward the lower angles, which is almost fully recovered after the high-temperature annealing. Since the extension at the left side of the GaN peak also vanishes, this additionally confirms its strain nature. The (0002) 2θ/ω scans were simulated to compare the strain in the Al\textsubscript{x}Ga\textsubscript{1-x}N/GaN heterostructures after the implantation with different Ar+ doses.

The depth profiles of Al concentration in the Al\textsubscript{x}Ga\textsubscript{1-x}N layers of the as-grown samples S1 and S2 (insets in Fig. 2) were previously determined in Ref. [10] and are used in this work to study the effect of ion implantation on the strain distribution in the Al\textsubscript{x}Ga\textsubscript{1-x}N/GaN heterostructures. It is well known that ion implantation is accompanied with formation of a high density of point defects, which generally leads to a vertical hydrostatic expansion of the unit cell (Fig. 1). To simulate 2θ/ω scans, the hydrostatic strain in the Al\textsubscript{x}Ga\textsubscript{1-x}N and GaN buffer layers was approximated with
the two-piece normal distribution (Eq. (19)), which is often used to fit the strain distribution in the ion-implanted layers [25], and an exponential function (Eq. (20)), respectively:

\[
\begin{aligned}
\frac{\Delta d}{d}_{\text{AlGaN}} &= T \exp \left[- \left(\frac{z - \rho}{2 \Omega_1} \right)^2 \right], \quad i = 1, \ z \leq \rho \\
\frac{\Delta d}{d}_{\text{GaN}} &= k_1 \exp(-k_2 z). \\
\end{aligned}
\] (19) (20)

Here, \(\rho \) is the implanted range, \(\Omega_1 \) and \(\Omega_2 \) are the left- and right-hand-side standard deviations, \(T \) is the peak strain value, \(k_1 \) and \(k_2 \) are fitting parameters, and \(z \) is the distance from the sample surface.

The differential evolution method [27, 28] allows one to minimize the deviation between two profiles and was employed for XRD 2θ/ω scans fitting. The error between the experimental and calculated 2θ/ω scans was determined as in Refs. [29, 30]. For the samples under investigation, the fitting is additionally complicated by the low intensity of the fringes from the Al\(_x\)Ga\(_{1-x}\)N layer and the relatively high intensity from the peak at the lower angles from the GaN substrate.

The widely used minimization criteria, such as mean-absolute error [27], relative error [27], and those described in Refs. [31–33], does not allow a good fitting of the entire XRD 2θ/ω scan, which is even more complicated when considering the diffuse scattering. Therefore, we first fitted the part of the 2θ/ω scan associated with the Al\(_x\)Ga\(_{1-x}\)N layer, assuming the strain profiles, the static D-W factor, and the Kato correlation length in the form of two-sided Gaussian functions similar to those for the strain distribution (Eq. (19)). The profiles of the static Debye–Waller factor and the correlation length by Kato were characterized with a common maximum. Second, the fitting criterion between the measured and simulated spectra is given as follows [30]:

\[
Err = \frac{1}{N} \sum_N \left| I_{\text{exp}} - I_{\text{calc}} \right|^K,
\] (21)

where the user specified value of \(K \) is limited within [0.1–0.9]. For small and large values of \(K \), a good fitting is achieved for the low and high intensity features of the 2θ/ω scan, respectively. When using the abovementioned
criteria [27] with \(K = 1 \) and \(K = 2 \), the best fit is achieved near the peak of the GaN substrate, where the intensity is high. However, the fitting of the \(\text{Al}_{x}\text{Ga}_{1-x}\text{N} \) layer is generally poor. Therefore, the \(\text{Al}_{x}\text{Ga}_{1-x}\text{N} \) peak was first fitted separately, using \(K = [0.5–0.65] \), while the parameters \(k_1 \) and \(k_2 \) in Eq. (20)) were kept fixed. After this, the determined fitting parameters for the \(\text{Al}_{x}\text{Ga}_{1-x}\text{N} \) layer were fixed, and the peak for the GaN buffer layer was fitted by changing \(k_1 \) and \(k_2 \) in Eq. (20). For the GaN buffer, the values of \(K \) were given both larger [0.7–0.8] and lower [0.2–0.5] than for the \(\text{Al}_{x}\text{Ga}_{1-x}\text{N} \) layer. The mutual influence of small changes in the fitting parameters of the two-step fitting process on the XRD spectra is small and can be neglected.

The deviation between the experimental and calculated XRD spectra is estimated using the following relative error:

\[
\text{Err}_{\text{rel}} = \frac{1}{N} \sum_{i=1}^{N} \frac{|I_{\text{exp}} - I_{\text{calc}}|}{I_{\text{exp}}} \tag{22}
\]

The relative error of the performed fitting did not exceed 40% for the sample S1 and 48% for the sample S2.

The depth profiles of strain in the \(\text{Al}_{x}\text{Ga}_{1-x}\text{N}/\text{GaN} \) heterostructures obtained from the simulations are shown in Fig. 3. The \(\text{Al}_{x}\text{Ga}_{1-x}\text{N} \) layers of the as-grown samples are under compressive strain (\(\varepsilon_c \)) along the c-axis due to the tensile biaxial strain (\(\varepsilon_{ab} \)) in the (0001) basal plane induced by the constant in-plane lattice parameter. The observed jump of \(\varepsilon_c \) at the \(\text{Al}_{x}\text{Ga}_{1-x}\text{N}/\text{GaN} \) interface results from the fact that the grading of Al concentration in the \(\text{Al}_{x}\text{Ga}_{1-x}\text{N} \) layer starts from about 7%, resulting in the ~0.17% lattice misfit at the \(\text{Al}_{x}\text{Ga}_{1-x}\text{N}/\text{GaN} \) interface.

After the implantation, an almost uniform depth distribution of hydrostatic strain in the \(\text{Al}_{x}\text{Ga}_{1-x}\text{N} \) layers the most correctly describes the \(\text{Al}_{x}\text{Ga}_{1-x}\text{N} \) peaks on the (0002) 2/θ scan. This is despite the high implantation energy (100 keV) that should have resulted in the maximum concentration of \(\text{Ar}^+ \) at the depth of about 90 nm from the surface [19], which is often reported for ion implantation into monocrystals [26]. The strain in the GaN buffer increases only after the implantation with the first dose of \(\text{Ar}^+ \) ions and is not affected by the second dose. Like to that in the \(\text{Al}_{x}\text{Ga}_{1-x}\text{N} \) layer, the strain in the GaN buffer is almost totally reduced after the sample annealing.

Fig. 4 shows the averaged over the sample area depth profiles of the static Debye–Wallner factor (\(\ell \)) and of the Kato correlation length (\(\tau_0 \)) for the sample S1. The shape of these profiles is very close to that of the demonstrated in Fig. 3 (inset) hydrostatic strain. The detailed analysis of the XRD spectra inherent to the samples S1 and S2 suggest the presence of few types of microdefects. For example, the microdefects of small and large radius have dominant effect on the spectra tail far and close to the Bragg position, respectively [34]. However, consideration of more types of microdefects sufficiently complicates the XRD spectra fitting and interpretation of results. Therefore, we consider only one dominant type of microdefects, which is characterized with some averaged across the layer parameters of the D-W factor, correlation length, as well as their depth distribution.

Fig. 5 shows the microdefects radii and concentrations, which were calculated according to Eqs. (16) and (17) and averaged over the compositional gradient layer thickness. A higher concentration of defects with smaller radius is seen by comparing the...
Liubchenko O.I., Kladko V.P., Stanchu H.V. et al. The effect of ion implantation on structural damage ...
The intensity decay at the tail region of the (0002) ω-scan is generally faster than for layers with threading pure screw dislocations \[38\]. It should be mentioned that for high densities of dislocations the behavior of intensity decay does not depend on the dislocations density but is defined solely by the dislocation type \[38\]. Additionally, due to the high densities of dislocations in as-growth non-implanted III-nitrides, the influence of point defects on the intensity decay is commonly neglected.

The slope of the tail region determined from the (0002) ω-scans of the samples S1 and S2 are plotted in Fig. 7. It can be seen that the slope of the intensity decay for the GaN template is about 3.75–3.88 for the sample S1 and about 3.6–3.8 for the sample S2, and only slightly changes after the high-temperature annealing. The slope for the AlGa1-xN layer is about 3.25 and 3.05 for the samples S1 and S2. The slope is only slightly affected by the implantation and annealing processes. Therefore, it may be concluded that the ion implantation does not sufficiently affect the dislocation configuration of the AlGa1-xN/GaN heterostructure.

The full width of half maximum (FWHM) of ω-scans for symmetrical (0002) reflection is commonly measured to estimate the density of screw-type dislocations \[10\]. FWHMs for the AlGa1-xN layers and GaN substrates of the samples S1 and S2 are shown in Fig. 8, and is compared for the as-grown, ion-implanted, and annealed stages. It can be seen that the density of screw-type dislocation is lower in the GaN and AlGa1-xN layers of the sample S1, which have a lower Al concentration in the AlGa1-xN layer. The density of screw-type dislocations in the AlGa1-xN layers is about 1.35 \times 10^3 \text{ cm}^{-2} and 2.1 \times 10^3 \text{ cm}^{-2}, for the samples S1 and S2, respectively \[10\]. FWHM increases after the first implantation and only slightly – after the second implantation step. The increase of the dislocation density at room temperature is unlikely, and the increase of the FWHM is probably related with the increase of the concentration of point defects and the change of the strain state in the sample. The FWHM sufficiently decreases after the high-temperature annealing, which indicate the reduced concentration of point defects induced by implantation and small changes in the dislocation concentration. The nature of broadening of the GaN substrate peak is different from that of the AlGa1-xN layer. It was shown in Ref. \[19\] that implantation in the upper part of an AlN/GaN SL also leads to an increase of the defect concentration in the buffer layer, which can be explained by the strain and microdefects redistribution in the sample. This also can be attributed to the samples S1 and S2 to explain the ω-scan broadening by the strain distribution and defect migration in the AlGa1-xN/GaN buffer-compositional gradient layer.

5. Conclusions

In this work, the compositionally graded AlGa1-xN/GaN heterostructures were implanted with Ar⁺ ions to study the possibility of strain engineering. A method was developed to retrieve the profiles of strains and those of the fluctuational displacements of atoms caused by the
presence of microdefects in a crystalline film by simulating the XRD spectra from the ion-implanted heterostructures with including the diffuse scattering. It was shown that ion implantation with doses and energy of about 2×10^{14} cm$^{-2}$ and 100 keV does can induce large values of hydrostatic strain -$0.3\ldots0.46\%$ and relatively low damage of the crystalline lattice. Ion implantation influences mainly on the density of point defects, while the dislocation configuration is almost unaffected. The density of microdefects is sufficiently reduced after the post-implantation annealing facilitated.

The structural perfection of the Al$_{1-x}$Ga$_x$N layers strongly depends on the Al concentration, and is reduced with increased Al. The structural changes induced by ion implantation in highly defected samples are less pronounced. Ion-implantation leads to ω-scans broadening from both the Al$_{1-x}$Ga$_x$N and GaN layers, which can be explained by migration of the point defects and redistribution of strain fields within the heterostructure. Due to the high density of dislocations in III-nitrides, the microdefect structure can be better distinguished for the ion-implanted samples with ultralow density of dislocations.

References

Liubchenko O.I., Kladko V.P., Stanchu H.V. et al. The effect of ion implantation on structural damage ...

Authors and CV

Oleksii I. Liubchenko, born in 1991, graduated from the National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” in 2015 and postgraduate study at the V. Lashkaryov Institute of Semiconductor Physics. Since 2018, he is the junior researcher at Department for Diffraction Analysis of the Structure of Semiconductors in V. Lashkaryov Institute of Semiconductor Physics, NASU. The area of scientific interests is material analysis sciences, high-resolution X-ray diffraction and computer simulation of XRD spectra. He authored 6 articles. E-mail: lubchenco.a@gmail.com

Kladko Vasyl, Doctor of Sciences (Physics and Mathematics), Corresponding Member of the National Academy of Sciences of Ukraine, Head of the Department of Structural and Elemental Analysis of Materials and Systems at the V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine. Author of more than 300 publications. His research interests include: solid-state physics, dynamical theory of diffraction of radiation, X-ray optics, X-ray diffraction analysis of semiconductor crystals, hetero- and nanosystems.

Stanchu H. Viktorovich, born in 1987. Work experience: junior researcher at the V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine. PhD student at the University of Arkansas. Authored over 18 peer-reviewed articles. The area of his scientific interests includes solid state physics, crystal characterization, and materials science.

Tomash Sabov born 1992 in Uzhgorod (Ukraine), graduated in electronics 2015 (Kyiv Polytechnic Institute), since 2015 he is a Ph.D. student at the V. Lashkaryov Institute of Semiconductor Physics, NASU. Since 2018 he is a junior researcher at the Department of Ion Beam Engineering at the V. Lashkaryov Institute of Semiconductor Physics. He is author of more than 20 publications. His main research activity is physics of thin films, chromogenic materials and SIMS analysis.

Melnik Victor, Doctor of Sciences (Physics and Mathematics), Senior Researcher, Department of Ion-Beam Engineering, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine. Author of more than 150 publications. His research interests include: solid-state physics, ion-beam material synthesis, SIMS spectroscopy.

A.E. Belyaev director of V. Lashkaryov Institute of Semiconductor Physics, Academician of NAS of Ukraine, Professor, Doctor of Science. The area of his scientific interests includes electrical and galvanomagnetic properties of semiconductors.